MATH-486 / 5 credits

Teacher: Friedli Sacha

Language: English


Summary

This course provides a rigorous introduction to the ideas, methods and results of classical statistical mechanics, with an emphasis on presenting the central tools for the probabilistic description of infinite lattice systems.

Content

Keywords

statistical mechanics, phase transitions, Gibbs measures, entropy, Ising model, Gaussian Free Field

Learning Prerequisites

Required courses

 

  • Analyse 1et 2
  • Théorie de la Mesure
  • Probabilités

 

Assessment methods

Examen oral.

 

Dans le cas de l’art. 3 al. 5 du Règlement de section, l’enseignant décide de la forme de l’examen qu’il communique aux étudiants concernés.

Resources

Bibliography

 

Statistical mechanics of lattice systems; a concrete mathematical introduction, by S. Friedli and Y. Velenik (Cambridge University Press, 2017)

Gibbs Measures and Phase Transitions, by H.-O. Georgii (De Gruyter Studies in Mathematics Vol. 9. Berlin: de Gruyter 1988)

 

Ressources en bibliothèque

In the programs

  • Semester: Spring
  • Exam form: Oral (summer session)
  • Subject examined: Statistical mechanics and Gibbs measures
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Spring
  • Exam form: Oral (summer session)
  • Subject examined: Statistical mechanics and Gibbs measures
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Spring
  • Exam form: Oral (summer session)
  • Subject examined: Statistical mechanics and Gibbs measures
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Spring
  • Exam form: Oral (summer session)
  • Subject examined: Statistical mechanics and Gibbs measures
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Spring
  • Exam form: Oral (summer session)
  • Subject examined: Statistical mechanics and Gibbs measures
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Spring
  • Exam form: Oral (summer session)
  • Subject examined: Statistical mechanics and Gibbs measures
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Spring
  • Exam form: Oral (summer session)
  • Subject examined: Statistical mechanics and Gibbs measures
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks

Reference week

 MoTuWeThFr
8-9     
9-10     
10-11     
11-12     
12-13     
13-14     
14-15     
15-16     
16-17     
17-18     
18-19     
19-20     
20-21     
21-22