CS-214 / 8 credits

Teacher(s): Kuncak Viktor, Odersky Martin, Pit-Claudel Clément

Language: English


Summary

Learn how to design and implement reliable, maintainable, and efficient software using a mix of programming skills (declarative style, higher-order functions, inductive types, parallelism) and fundamental software construction concepts (reusability, abstraction, encapsulation, composition, proofs)

Content

Learning Prerequisites

Required courses

Any previous course programming course

Recommended courses

CS-107 Introduction à la programmation

CS-108 Pratique de la programmation orientée-objet

Important concepts to start the course

Loops, conditionals, variable and type declarations, computing mathematical expressions

Learning Outcomes

By the end of the course, the student must be able to:

  • Implement reliable, efficient, and maintainable software
  • Identify data types and operations that lead to computational solutions
  • Argue that an implemented solution is correct
  • Transform programs to change its behavior in a desirable way
  • Design and implement data-parallel software using parallel collections
  • Make use of type systems and tests to develop reliable software

Teaching methods

  • Ex cathedra (live lectures)
  • Recorded videos
  • Exercise and lab sessions
  • Online discussions

Expected student activities

  • Attending lectures
  • Watching and understanding recorded videos
  • Solving exercises individually or in groups
  • Completing individual graded programming assignments (labs)
  • Completing midterm and end-of-semester exams

Assessment methods

  • 30% Midterm exam during the semester
  • 40% Final exam during the exam session
  • 30% Programming assignments (labs)

Supervision

Office hours Yes
Assistants Yes
Forum Yes

Resources

Virtual desktop infrastructure (VDI)

Yes

Moodle Link

Prerequisite for

CS-320 Computer language processing

CS-311 The Software enterprise - from ideas to products

CS-452 Foundations of software

CS-550 Formal verification

In the programs

  • Semester: Fall
  • Exam form: Written (winter session)
  • Subject examined: Software construction
  • Lecture: 3 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Project: 3 Hour(s) per week x 14 weeks
  • Semester: Fall
  • Exam form: Written (winter session)
  • Subject examined: Software construction
  • Lecture: 3 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Project: 3 Hour(s) per week x 14 weeks
  • Semester: Fall
  • Exam form: Written (winter session)
  • Subject examined: Software construction
  • Lecture: 3 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Project: 3 Hour(s) per week x 14 weeks
  • Semester: Fall
  • Exam form: Written (winter session)
  • Subject examined: Software construction
  • Lecture: 3 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Project: 3 Hour(s) per week x 14 weeks
  • Semester: Fall
  • Exam form: Written (winter session)
  • Subject examined: Software construction
  • Lecture: 3 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Project: 3 Hour(s) per week x 14 weeks

Reference week

 MoTuWeThFr
8-9     
9-10     
10-11     
11-12     
12-13     
13-14     
14-15     
15-16     
16-17     
17-18     
18-19     
19-20     
20-21     
21-22     

Related courses

Results from graphsearch.epfl.ch.