PHYS-453 / 6 credits

Teacher: Kippenberg Tobias

Language: English


Summary

This course on one hand develops the quantum theory of electromagnetic radiation from the principles of quantum electrodynamics. It will cover basis historic developments (coherent states, squeezed states, quantum theory of spontaneous emission) and moreover modern developments, e.g. quantum noise.

Content

Learning Prerequisites

Recommended courses

Quantum physics

Learning Outcomes

By the end of the course, the student must be able to:

  • Understand the quantum theory of electromagnetic radiation
  • Understand the different effects of light-matter interaction
  • Understand the differences of classical and quantum properties of light
  • Use of Python toolbox to simulate open quantum systems
  • Understand modern applications of quantum optics in quantum communication, quantum metrology and quantum computation

Teaching methods

Exercises (weekly).

Assessment methods

written exam

Resources

Moodle Link

In the programs

  • Semester: Fall
  • Exam form: Written (winter session)
  • Subject examined: Quantum electrodynamics and quantum optics
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Fall
  • Exam form: Written (winter session)
  • Subject examined: Quantum electrodynamics and quantum optics
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Fall
  • Exam form: Written (winter session)
  • Subject examined: Quantum electrodynamics and quantum optics
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Fall
  • Exam form: Written (winter session)
  • Subject examined: Quantum electrodynamics and quantum optics
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Fall
  • Exam form: Written (winter session)
  • Subject examined: Quantum electrodynamics and quantum optics
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Fall
  • Exam form: Written (winter session)
  • Subject examined: Quantum electrodynamics and quantum optics
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Fall
  • Exam form: Written (winter session)
  • Subject examined: Quantum electrodynamics and quantum optics
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Fall
  • Exam form: Written (winter session)
  • Subject examined: Quantum electrodynamics and quantum optics
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Fall
  • Exam form: Written (winter session)
  • Subject examined: Quantum electrodynamics and quantum optics
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Fall
  • Exam form: Written (winter session)
  • Subject examined: Quantum electrodynamics and quantum optics
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks

Reference week

 MoTuWeThFr
8-9     
9-10     
10-11     
11-12     
12-13     
13-14     
14-15     
15-16     
16-17     
17-18     
18-19     
19-20     
20-21     
21-22     

Related courses

Results from graphsearch.epfl.ch.