MICRO-435 / 6 credits

Teacher(s): Charbon Edoardo, Graziano Mariagrazia

Language: English


Summary

The course teaches non von-Neumann architectures. The first part of the course deals with quantum computing, sensing, and communications. The second focuses on field-coupled and conduction-based nanocomputing, in-memory and molecular computing, cellular automata, and spintronic computing.

Content

Keywords

Qubit, quantum stack, von Neumann architectures, biomolecular computing, memristors, logic-in-memory, conduction-based computing

Learning Prerequisites

Required courses

  • Basic mathematics/physics

Recommended courses

  • Basic quantum mechanics
  • Solid-state devices
  • CMOS circuit design

Learning Outcomes

By the end of the course, the student must be able to:

  • Generalize basic concept of a quantum computer
  • Develop simple algorithms
  • Design cryo-CMOS circuits and systems
  • Contextualise the control and readout of spin qubits
  • Elaborate basics of in-memory computing, molecular computing, memristors, and conduction-based computing

Assessment methods

On-going assesment through homework

Final examination

Resources

Bibliography

  • N.D. Mermin, “Quantum Computer Science: An Introduction,” Cambridge University Press, 5th printing, 2016. ISBN 978-0-521-87658-2
  • M.A. Nielsen, I.I. Chuang, “Quantum Computation and Quantum Information”, Cambridge Press, 3rd printing, 2017. ISBN 978-1-107-00217-3

Ressources en bibliothèque

In the programs

  • Semester: Fall
  • Exam form: Oral (winter session)
  • Subject examined: Quantum and nanocomputing
  • Lecture: 4 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Fall
  • Exam form: Oral (winter session)
  • Subject examined: Quantum and nanocomputing
  • Lecture: 4 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks

Reference week

 MoTuWeThFr
8-9     
9-10     
10-11     
11-12     
12-13     
13-14  BS150  
14-15 AAC132BS150  
15-16   
16-17    
17-18     
18-19     
19-20     
20-21     
21-22     

Tuesday, 14h - 17h: Lecture AAC132

Wednesday, 13h - 14h: Lecture BS150

Wednesday, 14h - 16h: Exercise, TP BS150