MGT-483 / 4 credits

Teacher: Kuhn Daniel

Language: English

## Summary

This course introduces the theory and applications of optimization. We develop tools and concepts of optimization and decision analysis that enable managers in manufacturing, service operations, marketing, transportation and finance to transform data into insights for making better decisions.

## Keywords

Linear optimization, discrete optimization, nonlinear optimization

## Important concepts to start the course

A good background in linear algebra and calculus is required. Basic knowledge of probability theory is useful but not necessary.

## Learning Outcomes

By the end of the course, the student must be able to:

• Recognize the power of using optimization methods and models in their careers
• Compare and appraise the basic theories that underlie current thinking in optimization
• Use these theories to structure practical decision-making situations
• Apply the fundamental quantitative methods and tools used in operations research
• Formulate managerial decision problems as optimization models
• Solve linear, nonlinear and discrete optimization models using MATLAB
• Model uncertainty in linear optimization using techniques from stochastic programming

## Transversal skills

• Communicate effectively with professionals from other disciplines.
• Use both general and domain specific IT resources and tools
• Assess one's own level of skill acquisition, and plan their on-going learning goals.
• Write a scientific or technical report.

## Teaching methods

Classical formal teaching interlaced with practical exercices

## Assessment methods

• 70% final exam
• 30% group project

## Supervision

 Office hours Yes Assistants Yes

## Bibliography

1. Dimitris Bertsimas and John Tsitsiklis, Introduction to Linear Optimization, Dynamic Ideas & Athena Scientific, 2008.
2. Dimitri P. Bertsekas, Nonlinear Programming, Athena Scientific, 2016.

## In the programs

• Semester: Spring
• Exam form: Written (summer session)
• Subject examined: Optimal decision making
• Lecture: 2 Hour(s) per week x 14 weeks
• Exercises: 2 Hour(s) per week x 14 weeks
• Semester: Spring
• Exam form: Written (summer session)
• Subject examined: Optimal decision making
• Lecture: 2 Hour(s) per week x 14 weeks
• Exercises: 2 Hour(s) per week x 14 weeks
• Semester: Spring
• Exam form: Written (summer session)
• Subject examined: Optimal decision making
• Lecture: 2 Hour(s) per week x 14 weeks
• Exercises: 2 Hour(s) per week x 14 weeks
• Semester: Spring
• Exam form: Written (summer session)
• Subject examined: Optimal decision making
• Lecture: 2 Hour(s) per week x 14 weeks
• Exercises: 2 Hour(s) per week x 14 weeks
• Semester: Spring
• Exam form: Written (summer session)
• Subject examined: Optimal decision making
• Lecture: 2 Hour(s) per week x 14 weeks
• Exercises: 2 Hour(s) per week x 14 weeks
• Semester: Spring
• Exam form: Written (summer session)
• Subject examined: Optimal decision making
• Lecture: 2 Hour(s) per week x 14 weeks
• Exercises: 2 Hour(s) per week x 14 weeks
• Semester: Spring
• Exam form: Written (summer session)
• Subject examined: Optimal decision making
• Lecture: 2 Hour(s) per week x 14 weeks
• Exercises: 2 Hour(s) per week x 14 weeks
• Exam form: Written (summer session)
• Subject examined: Optimal decision making
• Lecture: 2 Hour(s) per week x 14 weeks
• Exercises: 2 Hour(s) per week x 14 weeks
• Semester: Spring
• Exam form: Written (summer session)
• Subject examined: Optimal decision making
• Lecture: 2 Hour(s) per week x 14 weeks
• Exercises: 2 Hour(s) per week x 14 weeks

## Reference week

 Mo Tu We Th Fr 8-9 CM5 9-10 10-11 CM5 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22

Thursday, 8h - 10h: Lecture CM5

Thursday, 10h - 12h: Exercise, TP CM5