MATH-489 / 5 credits

Teacher: Jetchev Dimitar Petkov

Language: English


Summary

The goal of the course is to introduce basic notions from public key cryptography (PKC) as well as basic number-theoretic methods and algorithms for cryptanalysis of protocols and schemes based on PKC.

Content

Keywords

public key cryptography, key exchange, digital signatures, zero knowledge proofs, RSA, ElGamal, integer factorization, index calculus, elliptic curve cryptography

Teaching methods

lectures, exercises, additional references 

Assessment methods

Homework assignments: Weekly problem sets focusing on number-theoretic and complexity-theoretic aspects. These will be complemented by programming exercises in SAGE which is a Python-based computer algebra system. No prior experience with SAGE or Python is required. A subset of the homework will be handed in and graded, counting for 40% of the final grade.

The written final exam counts for 60% of the final grade. There will be no graded midterm since the class is online. The final exam will test theoretical understanding as well as understanding of the algorithms and protocols. The exam will include no SAGE programming exercises. If needed, algorithms could be presented with pseudo-code. The exact final exam format will be adapted to the epidemiological situation and resulting guidelines.

 

Dans le cas de l¿art. 3 al. 5 du Règlement de section, l¿enseignant décide de la forme de l¿examen qu¿il communique aux étudiants concernés.

In the programs

  • Semester: Spring
  • Exam form: Written (summer session)
  • Subject examined: Number theory in cryptography
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Spring
  • Exam form: Written (summer session)
  • Subject examined: Number theory in cryptography
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Spring
  • Exam form: Written (summer session)
  • Subject examined: Number theory in cryptography
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Spring
  • Exam form: Written (summer session)
  • Subject examined: Number theory in cryptography
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Spring
  • Exam form: Written (summer session)
  • Subject examined: Number theory in cryptography
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Spring
  • Exam form: Written (summer session)
  • Subject examined: Number theory in cryptography
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Spring
  • Exam form: Written (summer session)
  • Subject examined: Number theory in cryptography
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Spring
  • Exam form: Written (summer session)
  • Subject examined: Number theory in cryptography
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Spring
  • Exam form: Written (summer session)
  • Subject examined: Number theory in cryptography
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks

Reference week

 MoTuWeThFr
8-9     
9-10     
10-11     
11-12     
12-13     
13-14     
14-15     
15-16     
16-17     
17-18     
18-19     
19-20     
20-21     
21-22