BIO-482 / 5 credits

Teacher(s): Petersen Carl, Crochet Sylvain

Language: English


Summary

This course focuses on the cellular mechanisms of mammalian brain function. We will describe how neurons communicate through synaptic transmission in order to process sensory information ultimately leading to motor behavior.

Content

Keywords

Neurons, synapses, neuronal networks, learning, sensory processing, motor control

Learning Outcomes

By the end of the course, the student must be able to:

  • Establish a detailed understanding of the structure and function of the fundamental building blocks of the brain, its synapses and neurons.
  • Discuss methods for studying brain function, including cellular electrophysiology and optical imaging.
  • Describe how synaptic input is integrated and processed in single neurons based on the active and passive properties of axons and dendrites.
  • Integrate cellular knowledge into an understanding of neuronal network function in the context of sensory processing.

Transversal skills

  • Use both general and domain specific IT resources and tools

Teaching methods

3 h of lectures per week

2 h of exercises per week

The lectures for the first half of the course (Weeks 1-7) will be online video-lectures from the BrainX MOOC "Cellular mechanisms of brain function" hosted at edX. These videos will be accompanied by 2 hours of exercises per week.

Week 8 will be a revision week, followed by the main written exam in Week 9.

The miniproject in the second part of the semester (Weeks 10-14) will involve analysing a database of neurophysiological recordings to answer specific set questions.

 

Expected student activities

Students are expected to attend the lecture and exercise sessions.

Assessment methods

Written exam in Week 9 of the semester covering the online lecture material (two thirds of final grade)

Miniproject submitted by the last Friday of the semester (one third of final grade)

In the programs

  • Semester: Fall
  • Exam form: During the semester (winter session)
  • Subject examined: Neuroscience: cellular and circuit mechanisms
  • Lecture: 3 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Fall
  • Exam form: During the semester (winter session)
  • Subject examined: Neuroscience: cellular and circuit mechanisms
  • Lecture: 3 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Fall
  • Exam form: During the semester (winter session)
  • Subject examined: Neuroscience: cellular and circuit mechanisms
  • Lecture: 3 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Fall
  • Exam form: During the semester (winter session)
  • Subject examined: Neuroscience: cellular and circuit mechanisms
  • Lecture: 3 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Exam form: During the semester (winter session)
  • Subject examined: Neuroscience: cellular and circuit mechanisms
  • Lecture: 3 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks

Reference week

 MoTuWeThFr
8-9     
9-10     
10-11     
11-12     
12-13     
13-14  AAC137 AAC137
14-15   
15-16    
16-17     
17-18     
18-19     
19-20     
20-21     
21-22     

Wednesday, 13h - 16h: Lecture AAC137

Friday, 13h - 15h: Exercise, TP AAC137