CS-432 / 4 credits

Teacher: Ijspeert Auke

Language: English


Summary

The course gives (1) a review of different types of numerical models of control of locomotion and movement in animals, (2) a presentation of different techniques for designing models, and (3) an analysis of the use and testing of those models in robotics and neuroprosthetics.

Content

Keywords

Numerical models of animal motor control, locomotion, biomechanics, neural control of movement, numerical models

Learning Prerequisites

Required courses

None

Recommended courses

None

Important concepts to start the course

Programming in Python, Matlab, good mathematical background (dynamical systems)

Learning Outcomes

By the end of the course, the student must be able to:

  • Argue about the validity of models
  • Formulate models of motor control
  • Hypothesize mechanisms of motor control
  • Design models of motor control
  • Test the models

Transversal skills

  • Write a scientific or technical report.
  • Access and evaluate appropriate sources of information.

Teaching methods

Lectures and numerical exercises on a computer using Python, Matlab and FARMS, a dynamic simulator of animals and robots (with weekly sessions with assistants and the professor)

Expected student activities

  • Attending lectures
  • Read scientific articles
  • Develop numerical models of the locomotor control circuits of a simulated animal in Python and FARMS
  • Writting short scientific reports describing the models and analyzing the results of the simulations

Assessment methods

Written exam (50%) and a series of reports for the numerical exercises (50%)

Supervision

Office hours No
Assistants Yes
Forum Yes

In the programs

  • Semester: Spring
  • Exam form: Written (summer session)
  • Subject examined: Computational motor control
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Spring
  • Exam form: Written (summer session)
  • Subject examined: Computational motor control
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Spring
  • Exam form: Written (summer session)
  • Subject examined: Computational motor control
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Spring
  • Exam form: Written (summer session)
  • Subject examined: Computational motor control
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Spring
  • Exam form: Written (summer session)
  • Subject examined: Computational motor control
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Spring
  • Exam form: Written (summer session)
  • Subject examined: Computational motor control
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Spring
  • Exam form: Written (summer session)
  • Subject examined: Computational motor control
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Spring
  • Exam form: Written (summer session)
  • Subject examined: Computational motor control
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Spring
  • Exam form: Written (summer session)
  • Subject examined: Computational motor control
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Spring
  • Exam form: Written (summer session)
  • Subject examined: Computational motor control
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Spring
  • Exam form: Written (summer session)
  • Subject examined: Computational motor control
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Spring
  • Exam form: Written (summer session)
  • Subject examined: Computational motor control
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Spring
  • Exam form: Written (summer session)
  • Subject examined: Computational motor control
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Exam form: Written (summer session)
  • Subject examined: Computational motor control
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks

Reference week

 MoTuWeThFr
8-9     
9-10     
10-11   ELA2 
11-12    
12-13     
13-14   INF2 
14-15    
15-16     
16-17     
17-18     
18-19     
19-20     
20-21     
21-22     

Thursday, 10h - 12h: Lecture ELA2

Thursday, 13h - 15h: Exercise, TP INF2