PHYS-302 / 4 credits

Teacher: Rahi Sahand Jamal

Language: English


Summary

Understand and use the results and methods of population genetics, population dynamics, network theory, and reaction network dynamics to analyze and predict the behavior of living systems

Learning Outcomes

By the end of the course, the student must be able to:

  • Analyze biological dynamics
  • Solve the Master equation in different contexts
  • Formulate dynamical equations describing biological systems

Teaching methods

Flipped classroom, lectures (online and in person), in-person discussions, discussions of research articles, problem solving

Expected student activities

attend lectures, watch online lectures, complete exercises, read and present recent papers in the field

Assessment methods

40% homework, 60% final project

Resources

Moodle Link

In the programs

  • Semester: Fall
  • Exam form: During the semester (winter session)
  • Subject examined: Biophysics : physics of biological systems
  • Courses: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Type: optional
  • Semester: Fall
  • Exam form: During the semester (winter session)
  • Subject examined: Biophysics : physics of biological systems
  • Courses: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Type: optional
  • Semester: Fall
  • Exam form: During the semester (winter session)
  • Subject examined: Biophysics : physics of biological systems
  • Courses: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Type: optional
  • Semester: Fall
  • Exam form: During the semester (winter session)
  • Subject examined: Biophysics : physics of biological systems
  • Courses: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Type: optional
  • Semester: Fall
  • Exam form: During the semester (winter session)
  • Subject examined: Biophysics : physics of biological systems
  • Courses: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Type: optional
  • Semester: Fall
  • Exam form: During the semester (winter session)
  • Subject examined: Biophysics : physics of biological systems
  • Courses: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Type: optional
  • Semester: Fall
  • Exam form: During the semester (winter session)
  • Subject examined: Biophysics : physics of biological systems
  • Courses: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Type: optional
  • Semester: Fall
  • Exam form: During the semester (winter session)
  • Subject examined: Biophysics : physics of biological systems
  • Courses: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Type: optional
  • Semester: Fall
  • Exam form: During the semester (winter session)
  • Subject examined: Biophysics : physics of biological systems
  • Courses: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Type: optional
  • Exam form: During the semester (winter session)
  • Subject examined: Biophysics : physics of biological systems
  • Courses: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Type: optional
  • Exam form: During the semester (winter session)
  • Subject examined: Biophysics : physics of biological systems
  • Courses: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Type: optional
  • Semester: Fall
  • Exam form: During the semester (winter session)
  • Subject examined: Biophysics : physics of biological systems
  • Courses: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Type: optional

Reference week

Wednesday, 15h - 17h: Exercise, TP CM1100

Thursday, 9h - 11h: Lecture GRC001

Related courses

Results from graphsearch.epfl.ch.