Coursebooks

Analysis IV

MATH-205

Lecturer(s) :

Colombo Maria
Strütt David Valentin

Language:

English

Summary

Learn the basis of Lebesgue integration and Fourier analysis

Content


Lebesgue integral

- Measurable sets and functions
- Lebesgue integral
- Monotone and dominated convergence theorems
- L^p spaces


Fourier analysis
- Fourier series
- Introduction to Fourier transform
- Applications to partial differential equations

 

Learning Prerequisites

Required courses

Analysis I, II, III

Learning Outcomes

Teaching methods

Lectures and assisted exercises

Assessment methods

Midterm and written exam. The final evalutation will be given by

max{0.2 V_midterm + 0.8 * V_exam, V_exam}

Supervision

Assistants Yes

Resources

Bibliography

E. Stein: "Real analysis: measure theory, integration, and Hilbert spaces"
E. Stein: "Fourier analysis: an introduction"

S.D. Chatterji: "Cours d'analyse 1 et 3" PPUR
S.D. Chatterji: "Equations différentielles ordinaires et aux dérivées partielles"

Ressources en bibliothèque

Prerequisite for

Master cycle of mathematics

In the programs

Reference week

 MoTuWeThFr
8-9     
9-10     
10-11     
11-12     
12-13     
13-14     
14-15     
15-16     
16-17     
17-18     
18-19     
19-20     
20-21     
21-22     
Under construction
 
      Lecture
      Exercise, TP
      Project, other

legend

  • Autumn semester
  • Winter sessions
  • Spring semester
  • Summer sessions
  • Lecture in French
  • Lecture in English
  • Lecture in German