MATH-101(e) / 6 credits

Teacher: Lachowska Anna

Language: French


Résumé

Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.

Contenu

Mots-clés

nombres réels, fonction, suite numérique, suite convergente/divergente, limite d'une suite, sous-suite, fonction, limite d'une fonction, fonction continue, série numérique, série convergente/divergente, convergence absolue, dérivée, classe C^k, théorème(s) des accroissements finis, développement limité, série entière, intégrale de Riemann, primitive, théorème de la valeur moyenne

 

Acquis de formation

  • Le but fondamental de ce cours est d'acquérir les compétences suivantes :
  • Raisonner rigoureusement pour analyser des problèmes
  • Choisir ou sélectionner les outils d'analyse pertinents pour résoudre des problèmes
  • Identifier les concepts inhérents à chaque problème
  • Appliquer efficacement les concepts pour résoudre les exercices similaires aux exemples et exercices traités au cours
  • Se montrer capable d'analyser et de résoudre des problèmes nouveaux
  • Résoudre les problèmes de convergence, de suites et de séries
  • Maîtriser les techniques du calcul différentiel et intégral
  • Parmi les outils de base, on trouve les notions de convergence, de suites et de séries. Les fonctions d'une variable seront étudiées rigoureusement, avec pour but une compréhension approfondie des techniques du calcul différentiel et intégral.

Méthode d'enseignement

Cours ex cathedra et exercices en salle

Méthode d'évaluation

Examen écrit

Encadrement

Office hours Non
Assistants Oui
Forum électronique Non
Autres

Ressources

Bibliographie

Jacques Douchet and Bruno Zwahlen: Calcul différentiel et intégral. Volume 1. PPUR, 2016.

Ressources en bibliothèque

In the programs

  • Semester: Fall
  • Exam form: Written (winter session)
  • Subject examined: Analysis I
  • Lecture: 4 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Fall
  • Exam form: Written (winter session)
  • Subject examined: Analysis I
  • Lecture: 4 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks

Reference week

 MoTuWeThFr
8-9     
9-10     
10-11     
11-12     
12-13     
13-14     
14-15     
15-16     
16-17     
17-18     
18-19     
19-20     
20-21     
21-22