ME-465 / 3 credits

Teacher: Haussener Sophia

Language: English


Summary

The course will deepen the fundamentals of heat transfer. Particular focus will be put on radiative and convective heat transfer, and computational approaches to solve complex, coupled heat transfer problems.

Content

Keywords

Heat transfer, radiation, Monte Carlo methods, convection and conduction

Learning Prerequisites

Recommended courses

Thermodynamics and energetics I
Thermodynamics and energetics II
Fluid flow
Heat and mass transfer

Learning Outcomes

By the end of the course, the student must be able to:

  • Explain and apply the concepts of heat and mass transfer, E3
  • Implement heat transfer problems using computational tools
  • Design codes for solving heat transfer problems
  • Interpret solutions to heat transfer problems
  • Select appropriately materials for energy conversion systems based on fluids and operating conditions, E11
  • Compute and design solar collectors and receivers, E16

Transversal skills

  • Continue to work through difficulties or initial failure to find optimal solutions.
  • Plan and carry out activities in a way which makes optimal use of available time and other resources.
  • Use a work methodology appropriate to the task.
  • Demonstrate the capacity for critical thinking

Teaching methods

ex cathedra and exercises

Assessment methods

2/3 written exam during exam session

1/3 computational exercises during semester

Resources

Bibliography

M.F. Modest. Radiative Heat Transfer. Academic Press, San Diego, 2013.

G. Nellis, S. Klein. Heat transfer, Cambridge, 2008.

A. Faghri, Y. Zhang, J. Howell. Advanced heat and mass transfer. Global Digital Press, 2010.

Ressources en bibliothèque

In the programs

  • Semester: Spring
  • Exam form: Written (summer session)
  • Subject examined: Advanced heat transfer
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 1 Hour(s) per week x 14 weeks
  • Semester: Spring
  • Exam form: Written (summer session)
  • Subject examined: Advanced heat transfer
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 1 Hour(s) per week x 14 weeks
  • Semester: Spring
  • Exam form: Written (summer session)
  • Subject examined: Advanced heat transfer
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 1 Hour(s) per week x 14 weeks
  • Semester: Spring
  • Exam form: Written (summer session)
  • Subject examined: Advanced heat transfer
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 1 Hour(s) per week x 14 weeks

Reference week

 MoTuWeThFr
8-9     
9-10     
10-11     
11-12     
12-13     
13-14     
14-15     
15-16     
16-17     
17-18     
18-19     
19-20     
20-21     
21-22