Fiches de cours 2018-2019

PDF

Optimization for machine learning

CS-439

Enseignant(s) :

Jaggi Martin

Langue:

English

Summary

This course teaches an overview of modern optimization methods, for applications in machine learning and data science. In particular, scalability of algorithms to large datasets will be discussed in theory and in implementation.

Content

This course teaches an overview of modern optimization methods, for applications in machine learning and data science. In particular, scalability of algorithms to large datasets will be discussed in theory and in implementation.

Basic Contents:

Convexity, Gradient Methods, Proximal algorithms, Stochastic and Online Variants of mentioned methods, Coordinate Descent Methods, Subgradient Methods, Frank-Wolfe, Accelerated Methods, Primal-Dual context and certificates, Lagrange and Fenchel Duality, Second-Order Methods, Quasi-Newton Methods. Gradient-Free and Zero-Order Optimization.

Advanced Contents:

Parallel and Distributed Optimization Algorithms, Synchronous and Asynchronous Communication.

Lower Bounds.

Non-Convex Optimization: Convergence to Critical Points, Saddle-Point methods, Alternating minimization for matrix and tensor factorizations


An optional, graded, mini-project allows to explore the real-world performance aspects of the algorithms and variants of the course.

Keywords

Optimization, Machine learning

Learning Prerequisites

Recommended courses

Important concepts to start the course

Learning Outcomes

By the end of the course, the student must be able to:

Transversal skills

Teaching methods

Expected student activities

Students are expected to:

Assessment methods

Supervision

Office hours Yes
Assistants Yes
Forum Yes

Resources

Virtual desktop infrastructure (VDI)

No

Websites

Dans les plans d'études

Semaine de référence

 LuMaMeJeVe
8-9     
9-10     
10-11     
11-12     
12-13     
13-14     
14-15     
15-16     
16-17     
17-18     
18-19     
19-20     
20-21     
21-22     
En construction
 
      Cours
      Exercice, TP
      Projet, autre

légende

  • Semestre d'automne
  • Session d'hiver
  • Semestre de printemps
  • Session d'été
  • Cours en français
  • Cours en anglais
  • Cours en allemand