Fiches de cours 2017-2018

PDF
 

Information theory and signal processing

COM-406

Enseignant(s) :

Gastpar Michael Christoph
Telatar Emre
Urbanke Rüdiger

Langue:

English

Summary

Information Theory and Signal Processing are key underpinnings of Data Science. They provide frameworks for signal representation and for fundamental performance bounds.

Content

This class presents basic concepts of Information Theory and Signal Processing and their relevance to emerging problems in Data Science and Machine Learning.

A tentative list of topics covered is:

  1. Signal Representations
  2. Measures of Information
  3. Compression and Quantization
  4. Sparsity
  5. Exponential Families, Maximum Entropy
  6. Detection and Estimation Theory

Keywords

Information Theory, Signal Processing, Statistical Signal Processing, Machine Learning, Data Science.

Learning Prerequisites

Required courses

COM-300 Modèles stochastiques pour les communications

Recommended courses

Statistics

Important concepts to start the course

Solid understanding of linear algebra and probability as well as real and complex analysis.

Learning Outcomes

By the end of the course, the student must be able to:

Teaching methods

Ex cathedra lectures, exercises, and small projects.

Expected student activities

Follow lectures; independent work on problems (homework and small projects).

Assessment methods

Written final exam during the exam session.

Homework Problem Sets during the semester.

10% homework, 90% final exam.

Supervision

Assistants Yes

Resources

Bibliography

Cover and Thomas, Elements of Information Theory (Second Edition), Wiley, 2006.

Ressources en bibliothèque
Notes/Handbook

Lectures notes

Websites

Dans les plans d'études

  • Data Science, 2017-2018, Master semestre 1
    • Semestre
      Automne
    • Forme de l'examen
      Ecrit
    • Crédits
      6
    • Matière examinée
      Information theory and signal processing
    • Cours
      4 Heure(s) hebdo x 14 semaines
    • Exercices
      2 Heure(s) hebdo x 14 semaines
  • Humanités digitales, 2017-2018, Master semestre 1
    • Semestre
      Automne
    • Forme de l'examen
      Ecrit
    • Crédits
      6
    • Matière examinée
      Information theory and signal processing
    • Cours
      4 Heure(s) hebdo x 14 semaines
    • Exercices
      2 Heure(s) hebdo x 14 semaines
  • Science et ingénierie computationnelles, 2017-2018, Master semestre 1
    • Semestre
      Automne
    • Forme de l'examen
      Ecrit
    • Crédits
      6
    • Matière examinée
      Information theory and signal processing
    • Cours
      4 Heure(s) hebdo x 14 semaines
    • Exercices
      2 Heure(s) hebdo x 14 semaines
  • Science et ingénierie computationnelles, 2017-2018, Master semestre 3
    • Semestre
      Automne
    • Forme de l'examen
      Ecrit
    • Crédits
      6
    • Matière examinée
      Information theory and signal processing
    • Cours
      4 Heure(s) hebdo x 14 semaines
    • Exercices
      2 Heure(s) hebdo x 14 semaines

Semaine de référence

LuMaMeJeVe
8-9 INM201
9-10INM200
10-11 INM201
11-12
12-13
13-14
14-15
15-16
16-17
17-18
18-19
19-20
20-21
21-22
Cours
Exercice, TP
Projet, autre

légende

  • Semestre d'automne
  • Session d'hiver
  • Semestre de printemps
  • Session d'été
  • Cours en français
  • Cours en anglais
  • Cours en allemand