Fiches de cours 2017-2018

PDF
 

Fundamentals of biophotonics

BIO-443

Enseignant(s) :

Radenovic Aleksandra

Langue:

English

Summary

This module serves as an introduction to the area of biophotonics. The approach is multidisciplinary .The course is mainly knowledge-based but students will benefit from the skills learned by carrying out problem solving and by completing the assignment.

Content

We will focus on aspects following biophotonics aspects: light - biological matter interactions, optical spectroscopies and their applications, lasers in biology and medicine, photobiology, optical imagery, optical biosensors, light as a therapeutic tool, micro-array technology, laser tweezers and emerging biophotonic technologies

Keywords

absorption, emission, spectral response, reflection fluorescence, scattering, laser,fluorescent labeling

Learning Prerequisites

Required courses

Physics and biology elementary bachelor degree courses

Biomicroscopy I

Biomicroscopy II

Important concepts to start the course

The aims of the course are :

-Understand light-biological matter interaction; such as absorption, emission, spectral response, reflection fluorescence, scattering, etc.

-Optical sources and detectors

-Extend this understanding to interaction with cells and tissue highlighting the physical characteristics used in the applications to follow

-Fluorophore development and functionality, fluorescence microscopy of the cell cycle

-Show some therapeutic applications of light (Photo-activation of drugs Photo-dynamic therapies Tissue engineering with light)

-Initiate the students to optical techniques applied to biological materials

-Give an overview of optical biosensor methods and principles in optogenetcis

Fluorescent labeling and the mechanism of fluorescent resonant

energy transfer (FRET), FLIM, FRAP, FCS: applications to biosensors, Raman-based biosensors

Labelfree: Surface Plasmon resonance (SPR) and dielectric waveguide methods, biosensors based on whispering gallery modes in microresonators

At the end of the course, the student would have acquired the required knowledge to apprehend the future biophotonics practical applications.

 

Learning Outcomes

By the end of the course, the student must be able to:

Transversal skills

Resources

Bibliography

Handouts given during the course

Introduction to Biophotonics

Paras N. Prasad, John Wiley & Sons, Hoboken, New Jersey 2003

Principles of Fluorescence Spectroscopy

J.R. Lakowicz: 0, 2. Plenum,

Optical Biosensors

Ligler, FS. and Rowe Taitt, CA. (2002), Elsevier

Biophotonics: Optical Science and Engineering for the 21st Century

Shen, X. and van Wijk, R. (Eds):Springer, Berlin, 2006

Advances in Biophotonics

Wilson, B.C., Tuchin, V.V. and Tanev, S. NATO Science Series: Life and Behavioural Sciences, Volume 369, IOS Press, Amsterdam, 2005

Ressources en bibliothèque

Dans les plans d'études

Semaine de référence

 LuMaMeJeVe
8-9     
9-10     
10-11     
11-12     
12-13     
13-14     
14-15     
15-16     
16-17     
17-18     
18-19     
19-20     
20-21     
21-22     
En construction
 
      Cours
      Exercice, TP
      Projet, autre

légende

  • Semestre d'automne
  • Session d'hiver
  • Semestre de printemps
  • Session d'été
  • Cours en français
  • Cours en anglais
  • Cours en allemand