Fiches de cours 2017-2018

PDF
 

Artificial neural networks

CS-456

Enseignant(s) :

Gerstner Wulfram

Langue:

English

Summary

Since 2010 approaches in deep learning have revolutionized fields as diverse as computer vision, machine learning, or artificial intelligence. This course gives a systematic introduction into the main models of deep artificial neural networks: Supervised Learning and Reinforcement Learning.

Content

Keywords

Deep learning, artificial neural networks, reinforcement learning, TD learning, SARSA,

Learning Prerequisites

Required courses

CS 433 Pattern Classification and Machine Learning (or equivalent)

Calculus, Linear Algebra (at the level equivalent to first 2 years of EPFL in STI or IC, such as Computer Science, Physics or Electrical Engineering)

Recommended courses

stochastic processes

optimization

Important concepts to start the course

 

Learning Outcomes

By the end of the course, the student must be able to:

Transversal skills

Teaching methods

ex cathedra lectures and miniproject

Expected student activities

work on miniproject

attend all lectures

read book chapters and relevant tutorials

solve all exercises

 

Assessment methods

written exam (70 percent) and miniproject (3 percent)

Resources

Bibliography

Links to videos of presentations given by people in deep learning

Dans les plans d'études

Semaine de référence

 LuMaMeJeVe
8-9     
9-10     
10-11     
11-12     
12-13     
13-14     
14-15     
15-16     
16-17     
17-18     
18-19     
19-20     
20-21     
21-22     
En construction
 
      Cours
      Exercice, TP
      Projet, autre

légende

  • Semestre d'automne
  • Session d'hiver
  • Semestre de printemps
  • Session d'été
  • Cours en français
  • Cours en anglais
  • Cours en allemand