Coursebooks 2017-2018


Theoretical Microfluidics


Lecturer(s) :

Gijs Martinus
Lehnert Thomas




Every 2 years


Next time in Spring 2019


Navier-Stokes equation and basic flow solutions / Hydraulic resistance and compliance Capillary effects / Diffusion and mixing on the microscale Electrohydrodynamics and Electroosmosis, Nanofluidics Dielectrophoresis and Magnetophoresis


Liquid flows on the microscale often do not behave as we would expect intuitively from our macroscopic point of view. The goal of this course is to provide an insight into specific fluidic phenomena that appear on the scale of typical lab-on-a-chip devices. The course intends to give a more theoretical introduction of fundamental formulas and equations. Nevertheless a range of selected devices/applications will be shown to exemplify specific microfluidic properties. Using the Navier-Stokes equation we will first derive solutions for some basic microfluidic situations, with specific focus on pressure-driven flows. The impact of liquid/channel wall interfaces (capillary forces) on the solution transport in microchannels will be discussed. Analysing the convection-diffusion equation will allow to understand issues related to diffusion and mixing encountered in many lab-on-a-chip applications. In the last part of the course the physical background of liquid transport by electrical fields on the micro- and nanoscale will be explained in detail (electroosmosis). We will also derive the formulas governing the manipulation of cells or particles by electric (dielectrophoresis) and magnetic forces in microfluidic devices.


Parts of the cours are based on the book "Theoretical Microfluidics" by Henrik Bruus


Microfluidics, lab-on-a-chip, Navier-Stokes equation, electroosmosis

Learning Prerequisites

Important concepts to start the course

Basic knowledge in physics and lab-on-a-chip technologies/applications

Learning Outcomes

By the end of the course, the student must be able to:

Transversal skills



In the programs

Reference week

      Exercise, TP
      Project, other


  • Autumn semester
  • Winter sessions
  • Spring semester
  • Summer sessions
  • Lecture in French
  • Lecture in English
  • Lecture in German