Coursebooks 2017-2018

PDF
 

Riemann surfaces

MATH-410

Lecturer(s) :

Viazovska Maryna

Language:

English

Summary

This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex domains under discontinuous group actions, as algebraic curves. We will cover the following topics:

Content

Keywords

Learning Prerequisites

Required courses

Recommended courses

Important concepts to start the course

Learning Outcomes

By the end of the course, the student must be able to:

Transversal skills

Teaching methods

Expected student activities

Assessment methods

Dans le cas de l'art. 3 al. 5 du Règlement de section, l'enseignant décide de la forme de l'examen qu'il communique aux étudiants concernés.

Supervision

Office hours Yes
Assistants Yes
Forum Yes

Resources

Bibliography

  1. P. Griffiths and J. Harris, Principles of algebraic geometry
  2. J. Jost, Compact Riemann Surfaces: An Introduction to Contemporary Mathematics
  3. J. B. Bost, Introduction to Compact Riemann Surfaces, Jacobians, and Abelian Varieties.

Ressources en bibliothèque

In the programs

  • Applied Mathematics, 2017-2018, Master semester 1
    • Semester
      Fall
    • Exam form
      Written
    • Credits
      5
    • Subject examined
      Riemann surfaces
    • Lecture
      2 Hour(s) per week x 14 weeks
    • Exercises
      2 Hour(s) per week x 14 weeks
  • Applied Mathematics, 2017-2018, Master semester 3
    • Semester
      Fall
    • Exam form
      Written
    • Credits
      5
    • Subject examined
      Riemann surfaces
    • Lecture
      2 Hour(s) per week x 14 weeks
    • Exercises
      2 Hour(s) per week x 14 weeks
  • Mathematics - master program, 2017-2018, Master semester 1
    • Semester
      Fall
    • Exam form
      Written
    • Credits
      5
    • Subject examined
      Riemann surfaces
    • Lecture
      2 Hour(s) per week x 14 weeks
    • Exercises
      2 Hour(s) per week x 14 weeks
  • Mathematics - master program, 2017-2018, Master semester 3
    • Semester
      Fall
    • Exam form
      Written
    • Credits
      5
    • Subject examined
      Riemann surfaces
    • Lecture
      2 Hour(s) per week x 14 weeks
    • Exercises
      2 Hour(s) per week x 14 weeks
  • Mathematics for teaching, 2017-2018, Master semester 1
    • Semester
      Fall
    • Exam form
      Written
    • Credits
      5
    • Subject examined
      Riemann surfaces
    • Lecture
      2 Hour(s) per week x 14 weeks
    • Exercises
      2 Hour(s) per week x 14 weeks
  • Mathematics for teaching, 2017-2018, Master semester 3
    • Semester
      Fall
    • Exam form
      Written
    • Credits
      5
    • Subject examined
      Riemann surfaces
    • Lecture
      2 Hour(s) per week x 14 weeks
    • Exercises
      2 Hour(s) per week x 14 weeks

Reference week

MoTuWeThFr
8-9 MAA110
9-10
10-11 MAA110
11-12
12-13
13-14
14-15
15-16
16-17
17-18
18-19
19-20
20-21
21-22
Lecture
Exercise, TP
Project, other

legend

  • Autumn semester
  • Winter sessions
  • Spring semester
  • Summer sessions
  • Lecture in French
  • Lecture in English
  • Lecture in German