Coursebooks 2017-2018

PDF
 

Quantum field theory II

PHYS-432

Lecturer(s) :

Rattazzi Riccardo

Language:

English

Summary

The goal of the course is to introduce relativistic quantum field theory as the framework to describe fundamental interactions.

Content

1. Introduction 

Conceptual foundations. Overview of particle physics. Units of measure in high energy physics. 

2. Classical Field Theory                                                                                              

Lagrangian and Hamiltonian formulation. Noether's theorem.

3. Symmetry Principles                                                                                                    

Elements of group theory and group representations. Lie groups. Lie Algebras. Lorentz and Poincaré groups. Parity, time reversal and charge conjugation.

4. Free Quantum Fields
Canonical quantization. Creation and annihilation operators. Fock space. Free relativistic particles. Bosons and Fermions. Symmetries in the quantum theory. Causality.
5. Classification of quantum fields
Real and complex scalar fields. Spinor field. Quantized electromagnetic field. Massive vector field.
6. Interacting fields
Formal theory of relativistic scattering. Asymptotic states. Lippmann-Schwinger equation. S-matrix and Feynman diagrams. Cross sections and decay-rates.
7. Fundamental interactions
Quantum electrodynamics. The weak force and parity violation. The strong force. Overview of the Standard Model.


Learning Prerequisites

Recommended courses

Electrodynamics, Special relativity, Quantum Mechanics I and II, Mathematical Physics strongly recommended

Learning Outcomes

By the end of the course, the student must be able to:

Transversal skills

Teaching methods

Ex cathedra and exercises in class

Assessment methods

oral exam

Resources

Bibliography

Ressources en bibliothèque
Websites

In the programs

Reference week

 MoTuWeThFr
8-9     
9-10     
10-11     
11-12     
12-13     
13-14     
14-15     
15-16     
16-17     
17-18     
18-19     
19-20     
20-21     
21-22     
Under construction
 
      Lecture
      Exercise, TP
      Project, other

legend

  • Autumn semester
  • Winter sessions
  • Spring semester
  • Summer sessions
  • Lecture in French
  • Lecture in English
  • Lecture in German