Coursebooks 2017-2018

PDF
 

Photochemistry II

CH-443

Lecturer(s) :

Moser Jacques-Edouard

Language:

English

Summary

Following "Photochemistry I", this course introduces the current theoretical models regarding the dynamics of electron transfer. It focuses then on photoredox processes at the surface of solids. Current technological applications, as well as the most recent advances in the field are presented.

Content

1. Dynamics of photoinduced electron transfer. Theoretical models of charge transfer dynamics - Marcus-Hush theory - Fermi golden rule - Semi-classical model - Photoinduced ET - Sensitization of a wide bandgap semiconductor - Detailed treatment of examples of homogeneous and micro-heterogeneous systems

2. Photoelectrochemistry of semiconductors. Contact phenomena at the solid/solid and solid/electrolyte interfaces - Case of finely dispersed semiconductor particles - Ions specific adsorption and surface states - Dynamics of charge carriers in the solid - Spectral sensitization of large bandgap semiconductors

3. Photo-electrochemical conversion of solar energy. Thermodynamic principles and limitations of solar energy conversion efficency - Photogalvanic and photovoltaic cells - Artificial photosynthesis

4. Photocatalysis. Advanced oxidation processes

5. Photographic and xerographic processes. Molecular systems - Photopolymer systems - Electrophotography - Offset printing - Silver photography - Color reproduction

6. Optical data storage. Color theory - High resolution spectroscopy - Optical discs - Holography.

Keywords

Electron transfer dynamics, Marcus theory, Fermi Golden Rule, Photoinduced electron transfer, Semiconductor photoelectrochemistry, Photoelectrochemical conversion of solar energy, Photovoltaics, Photocatalysis, Photography and xerography, Color theory, Optical data storage

Learning Prerequisites

Recommended courses

Quantume chemistry, Molecular spectroscopy, Photochemistry I

Learning Outcomes

By the end of the course, the student must be able to:

Teaching methods

Ex cathedra lectures

Assessment methods

Final oral examination

Supervision

Office hours No
Assistants No
Forum No

Resources

Notes/Handbook

Copies of the slides are avallable in pdf format on the course's web site

Websites

In the programs

Reference week

 MoTuWeThFr
8-9    CHB330
9-10    
10-11     
11-12     
12-13     
13-14     
14-15     
15-16     
16-17     
17-18     
18-19     
19-20     
20-21     
21-22     
 
      Lecture
      Exercise, TP
      Project, other

legend

  • Autumn semester
  • Winter sessions
  • Spring semester
  • Summer sessions
  • Lecture in French
  • Lecture in English
  • Lecture in German