Coursebooks 2017-2018

PDF
 

Mathematical physiology

MATH-475

Lecturer(s) :

Lessinnes Thomas Olivier D.

Language:

English

Summary

The aim of the course is two fold: to bring students within reach of current research topics in physiology and to showcase methods allowing to analyse non-linear systems of differential equations.

Content

The course will derive and analyse models for

- enzyme kinematics

- trans-membrane ion transport

- wave propagation in neurones

- calcium dynamics

- the electrochemical action of the heart

- the heart as a pump

- respiration

- blood cell production

Keywords

Physiology; Non-linear dynamics

Learning Prerequisites

Required courses

Analysis

Learning Outcomes

Assessment methods

Oral exam

Dans le cas de l'art. 3 al. 5 du Règlement de section, l'enseignant décide de la forme de l'examen qu'il communique aux étudiants concernés.

Supervision

Office hours Yes
Assistants Yes
Forum No

Resources

Bibliography

J. Keener and J. Sneyd, Mathematical Physiology (Springer-Verlag, 1998). First edition or Second edition Vol I: Chs. 2, 7. Vol II: Chs. 11, 13, 14. (Springer-Verlag, 2009)]

J. D. Murray, Mathematical Biology (Springer-Verlag, 2nd ed., 1993). [Third edition, Vols I and II, (Springer-Verlag, 2003).]

L. Glass and M. C. Mackey, From Clocks to Chaos (Princeton University Press, 1988).

P. Grindrod, Patterns and Waves (OUP, 1991).

Ressources en bibliothèque
Notes/Handbook

Will be provided as the year progresses.

In the programs

  • Applied Mathematics, 2017-2018, Master semester 1
    • Semester
      Fall
    • Exam form
      Oral
    • Credits
      5
    • Subject examined
      Mathematical physiology
    • Lecture
      2 Hour(s) per week x 14 weeks
    • Exercises
      2 Hour(s) per week x 14 weeks
  • Applied Mathematics, 2017-2018, Master semester 3
    • Semester
      Fall
    • Exam form
      Oral
    • Credits
      5
    • Subject examined
      Mathematical physiology
    • Lecture
      2 Hour(s) per week x 14 weeks
    • Exercises
      2 Hour(s) per week x 14 weeks
  • Mathematics - master program, 2017-2018, Master semester 1
    • Semester
      Fall
    • Exam form
      Oral
    • Credits
      5
    • Subject examined
      Mathematical physiology
    • Lecture
      2 Hour(s) per week x 14 weeks
    • Exercises
      2 Hour(s) per week x 14 weeks
  • Mathematics - master program, 2017-2018, Master semester 3
    • Semester
      Fall
    • Exam form
      Oral
    • Credits
      5
    • Subject examined
      Mathematical physiology
    • Lecture
      2 Hour(s) per week x 14 weeks
    • Exercises
      2 Hour(s) per week x 14 weeks
  • Mathematics for teaching, 2017-2018, Master semester 1
    • Semester
      Fall
    • Exam form
      Oral
    • Credits
      5
    • Subject examined
      Mathematical physiology
    • Lecture
      2 Hour(s) per week x 14 weeks
    • Exercises
      2 Hour(s) per week x 14 weeks
  • Mathematics for teaching, 2017-2018, Master semester 3
    • Semester
      Fall
    • Exam form
      Oral
    • Credits
      5
    • Subject examined
      Mathematical physiology
    • Lecture
      2 Hour(s) per week x 14 weeks
    • Exercises
      2 Hour(s) per week x 14 weeks

Reference week

MoTuWeThFr
8-9
9-10
10-11
11-12
12-13
13-14 MA B1 11
14-15
15-16 MA B1 11
16-17
17-18
18-19
19-20
20-21
21-22
Lecture
Exercise, TP
Project, other

legend

  • Autumn semester
  • Winter sessions
  • Spring semester
  • Summer sessions
  • Lecture in French
  • Lecture in English
  • Lecture in German