COM-514 / 6 credits

Teacher:

Language: English

Remark: cours pas donné en 2023-24


Summary

A theoretical and computational framework for signal sampling and approximation is presented from an intuitive geometric point of view. This lecture covers both mathematical and practical aspects of modern signal processing, with hands-on projects, applications and algorithmic aspects.

Content

Learning Prerequisites

Important concepts to start the course

Good knowledge of linear algebra concepts. Basics of Fourier analysis and signal processing. Basic knowledge of Python and its scientific packages (Numpy, Scipy).

 

 

Supervision

Office hours No
Assistants Yes

Resources

Moodle Link

In the programs

  • Semester: Fall
  • Exam form: Written (winter session)
  • Subject examined: Mathematical foundations of signal processing
  • Lecture: 3 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Fall
  • Exam form: Written (winter session)
  • Subject examined: Mathematical foundations of signal processing
  • Lecture: 3 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Fall
  • Exam form: Written (winter session)
  • Subject examined: Mathematical foundations of signal processing
  • Lecture: 3 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Fall
  • Exam form: Written (winter session)
  • Subject examined: Mathematical foundations of signal processing
  • Lecture: 3 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Fall
  • Exam form: Written (winter session)
  • Subject examined: Mathematical foundations of signal processing
  • Lecture: 3 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Fall
  • Exam form: Written (winter session)
  • Subject examined: Mathematical foundations of signal processing
  • Lecture: 3 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Fall
  • Exam form: Written (winter session)
  • Subject examined: Mathematical foundations of signal processing
  • Lecture: 3 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Fall
  • Exam form: Written (winter session)
  • Subject examined: Mathematical foundations of signal processing
  • Lecture: 3 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Fall
  • Exam form: Written (winter session)
  • Subject examined: Mathematical foundations of signal processing
  • Lecture: 3 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Fall
  • Exam form: Written (winter session)
  • Subject examined: Mathematical foundations of signal processing
  • Lecture: 3 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Fall
  • Exam form: Written (winter session)
  • Subject examined: Mathematical foundations of signal processing
  • Lecture: 3 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Fall
  • Exam form: Written (winter session)
  • Subject examined: Mathematical foundations of signal processing
  • Lecture: 3 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Fall
  • Exam form: Written (winter session)
  • Subject examined: Mathematical foundations of signal processing
  • Lecture: 3 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Exam form: Written (winter session)
  • Subject examined: Mathematical foundations of signal processing
  • Lecture: 3 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Fall
  • Exam form: Written (winter session)
  • Subject examined: Mathematical foundations of signal processing
  • Lecture: 3 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Exam form: Written (winter session)
  • Subject examined: Mathematical foundations of signal processing
  • Lecture: 3 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Semester: Fall
  • Exam form: Written (winter session)
  • Subject examined: Mathematical foundations of signal processing
  • Lecture: 3 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks

Reference week

 MoTuWeThFr
8-9     
9-10     
10-11     
11-12     
12-13     
13-14     
14-15     
15-16     
16-17     
17-18     
18-19     
19-20     
20-21     
21-22     

Related courses

Results from graphsearch.epfl.ch.