Coursebooks 2017-2018

PDF
 

Computational physics III

PHYS-332

Lecturer(s) :

Yazyev Oleg

Language:

English

Withdrawal

It is not allowed to withdraw from this subject after the registration deadline.

Summary

This course teaches the students practical skills needed for solving modern physics problems by means of computation. A number of examples illustrate the utility of numerical computations in various domains of physics.

Content

Fourier series and transforms Introduction to the Fourier series and transforms and their application. Mathematical properties: convergence, convolution, correlation, Gibbs phenomenon and the Wiener-Khinchin theorem. Fourier transform on discrete sampled data: aliasing and sampling theorem. Discrete Fourier transform (DFT) and fast Fourier transform (FFT). Applications: spectral analysis, filters. Fourier transforms in higher dimensionality.

Linear systems Introduction and examples. Gauss-Jordan elimination, LU factorization. Iterative refinement: tridiagonal and band diagonal systems. Iterative methods and preconditioning: Jacobi, Richards and gradient methods. Conjugate gradient method. Iterative vs direct methods.

Matrix manipulation and eigenvalues problems Introduction and examples. Properties and decomposition. Poweriteration. QR decomposition and iterative procedure. Singular value decomposition (SVD).

Learning Prerequisites

Recommended courses

1st and 2nd years numerical physics courses

Learning Outcomes

By the end of the course, the student must be able to:

Teaching methods

Ex cathedra presentations, exercises and work under supervision

Assessment methods

3 reports during the semester

Resources

Bibliography

J. F. James, A Student's guide to Fourier transforms, CUP 2011

L. N. Trefethen and D. Bau III, Numerical linear algebra, SIAM 1997

Ressources en bibliothèque

In the programs

  • Physics, 2017-2018, Bachelor semester 6
    • Semester
      Spring
    • Exam form
      During the semester
    • Credits
      3
    • Subject examined
      Computational physics III
    • Lecture
      1 Hour(s) per week x 14 weeks
    • Practical work
      2 Hour(s) per week x 14 weeks
  • Computational science and Engineering, 2017-2018, Master semester 2
    • Semester
      Spring
    • Exam form
      During the semester
    • Credits
      3
    • Subject examined
      Computational physics III
    • Lecture
      1 Hour(s) per week x 14 weeks
    • Practical work
      2 Hour(s) per week x 14 weeks
  • Computational science and Engineering, 2017-2018, Master semester 4
    • Semester
      Spring
    • Exam form
      During the semester
    • Credits
      3
    • Subject examined
      Computational physics III
    • Lecture
      1 Hour(s) per week x 14 weeks
    • Practical work
      2 Hour(s) per week x 14 weeks

Reference week

MoTuWeThFr
8-9
9-10
10-11
11-12
12-13
13-14
14-15 CE1104
GRB001
15-16 GRB001
16-17
17-18
18-19
19-20
20-21
21-22
Lecture
Exercise, TP
Project, other

legend

  • Autumn semester
  • Winter sessions
  • Spring semester
  • Summer sessions
  • Lecture in French
  • Lecture in English
  • Lecture in German